Functional clustering: identifying strongly interactive brain regions in neuroimaging data.

نویسندگان

  • G Tononi
  • A R McIntosh
  • D P Russell
  • G M Edelman
چکیده

Brain imaging data are generally used to determine which brain regions are most active in an experimental paradigm or in a group of subjects. Theoretical considerations suggest that it would also be of interest to know which set of brain regions are most interactive in a given task or group of subjects. A subset of regions that are much more strongly interactive among themselves than with the rest of the brain is called here a functional cluster. Functional clustering can be assessed by calculating for each subset of brain regions a measure, the cluster index, obtained by dividing the statistical dependence within the subset by that between the subset and rest of the brain. A cluster index value near 1 indicates a homogeneous system, while a high cluster index indicates that a subset of brain regions forms a distinct functional cluster. Within a functional cluster, individual brain regions are ranked at the center or at the periphery according to their statistical dependence with the rest of that cluster. The applicability of this approach has been tested on PET data obtained from normal and schizophrenic subjects performing a set of cognitive tasks. Analysis of the data reveals evidence of functional clustering. A comparative evaluation of which regions are more peripheral or more central suggests distinct differences between the two groups of subjects. We consider the applicability of this analysis to data obtained with imaging modalities offering higher temporal resolution than PET.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data mining a functional neuroimaging database for functional segregation in brain regions

We describe a specialized neuroinformatic data mining technique in connection with a meta-analytic functional neuroimaging database: We mine for functional segregation within brain regions by identifying journal articles that report brain activations within the regions and clustering the abstract of the articles using non-negative matrix factorization on the bag-of-words matrix. We divide the b...

متن کامل

Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering

Functional neuroimaging can measure the brain’s response to an external stimulus. It is used to perform brain mapping: identifying from these observations the brain regions involved. This problem can be cast into a linear supervised learning task where the neuroimaging data are used as predictors for the stimulus. Brain mapping is then seen as a support recovery problem. On functional MRI (fMRI...

متن کامل

Functional Connectivity Alterations in Epilepsy from Resting-State Functional MRI

The study of functional brain connectivity alterations induced by neurological disorders and their analysis from resting state functional Magnetic Resonance Imaging (rfMRI) is generally considered to be a challenging task. The main challenge lies in determining and interpreting the large-scale connectivity of brain regions when studying neurological disorders such as epilepsy. We tackle this ch...

متن کامل

Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation

Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical-f...

متن کامل

Which fMRI clustering gives good brain parcellations?

Analysis and interpretation of neuroimaging data often require one to divide the brain into a number of regions, or parcels, with homogeneous characteristics, be these regions defined in the brain volume or on the cortical surface. While predefined brain atlases do not adapt to the signal in the individual subject images, parcellation approaches use brain activity (e.g., found in some functiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 1998